
1

Statistical NLP
Spring 2009

Lecture 2: Language Models

Dan Klein – UC Berkeley

� Frequency gives pitch; amplitude gives volume

� Frequencies at each time slice processed into observation vectors

s p ee ch l a b

a
m
p
lit
u
d
e

Speech in a Slide

……………………………………………..a12a13a12a14a14………..

The Noisy-Channel Model

� We want to predict a sentence given acoustics:

� The noisy channel approach:

Acoustic model: HMMs over

word positions with mixtures

of Gaussians as emissions

Language model:

Distributions over sequences

of words (sentences)

Acoustically Scored Hypotheses

the station signs are in deep in english -14732

the stations signs are in deep in english -14735

the station signs are in deep into english -14739

the station 's signs are in deep in english -14740

the station signs are in deep in the english -14741

the station signs are indeed in english -14757

the station 's signs are indeed in english -14760

the station signs are indians in english -14790

the station signs are indian in english -14799

the stations signs are indians in english -14807

the stations signs are indians and english -14815

ASR System Components

source
P(w)

w a

decoder
observed

argmax P(w|a) = argmax P(a|w)P(w)

w w

w a
best

channel
P(a|w)

Language Model Acoustic Model

Translation: Codebreaking?

� “Also knowing nothing official about, but having
guessed and inferred considerable about, the
powerful new mechanized methods in
cryptography—methods which I believe succeed
even when one does not know what language has
been coded—one naturally wonders if the problem
of translation could conceivably be treated as a
problem in cryptography. When I look at an article
in Russian, I say: ‘This is really written in English,
but it has been coded in some strange symbols. I
will now proceed to decode.’ ”

� Warren Weaver (1955:18, quoting a letter he wrote in 1947)

2

MT Overview

7

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)

e e

e f
best

channel
P(f|e)

Language Model Translation Model

Other Noisy-Channel Processes

� Handwriting recognition

� OCR

� Spelling Correction

� More…

)|()()|(textstrokesPtextPstrokestextP ∝

)|()()|(textpixelsPtextPpixelstextP ∝

)|()()|(texttyposPtextPtypostextP ∝

Probabilistic Language Models

� Goal: Assign useful probabilities P(x) to sentences x
� Input: many observations of training sentences x

� Output: system capable of computing P(x)

� Probabilities should broadly indicate likelihood of sentences
� P(I saw a van) >> P(eyes awe of an)

� Not grammaticality: P(artichokes intimidate zippers) ≈ 0

� In principle, “likely” depends on the domain, context, speaker…

� One option: empirical distribution over training sentences?
� Problem: doesn’t generalize (at all)

� Two ways of generalizing
� Decomposition: break sentences into small steps which can be

recombined in new ways (conditional independence)

� Smoothing: allow for the possibility of unseen events

N-Gram Language Models

� No loss of generality: break sentence probability down

� Too many histories!
� P(??? | No loss of generality : break sentence) ?

� P(??? | the water is so transparent that) ?

� N-gram models: assume each word depends only on a
short linear history

Unigram Models

� Simplest case: unigrams

� Generative process: pick a word, pick a word, …

� As a graphical model:

� To make this a proper distribution over sentences, we have to generate a
special STOP symbol last. (Why?)

� Examples:
� [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]

� [thrift, did, eighty, said, hard, 'm, july, bullish]

� [that, or, limited, the]

� []

� [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,
mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further,
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a,
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay,
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers,
advancers, half, between, nasdaq]

w1 w2 wn-1 STOP………….

3

Bigram Models

� Big problem with unigrams: P(the the the the) >> P(I like ice cream)!

� Condition on previous word:

� Obvious that this should help – in probabilistic terms, we’re using weaker
conditional independence assumptions (what’s the cost?)

� Any better?
� [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

� [outside, new, car, parking, lot, of, the, agreement, reached]

� [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,
seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe,
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious,
teaching]

� [this, would, be, a, record, november]

w1 w2 wn-1 STOPSTART

More N-Gram Examples

Regular Languages?

� N-gram models are (weighted) regular languages
� Many linguistic arguments that language isn’t regular.

� Long-distance effects: “The computer which I had just put into the
machine room on the fifth floor crashed.”

� Recursive structure

� Why CAN we often get away with n-gram models?

� PCFG LM (later):
� [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the,

risk, involving, IRS, leaders, and, transportation, prices, .]

� [It, could, be, announced, sometime, .]
� [Mr., Toseland, believes, the, average, defense, economy, is,

drafted, from, slightly, more, than, 12, stocks, .]

Model Parameters

� The parameters of an n-gram model:
� The conditional probability estimates, we’ll call them θ

� Obvious estimate is the relative frequency estimate (aka the maximum
likelihood estimate)

� General method
� Take a training set X and a test set X’

� Compute an estimate θ from X

� Use it to assign probabilities to other sentences, such as X’

� Some quantities of interest
� Training likelihood

� Test likelihood

Is This Working?

� The game isn’t to pound out fake sentences!

� Obviously, generated sentences get “better” as we increase the

model order

� More precisely: using ML estimators, higher order is always

better likelihood on train, but not test

� What we really want to know is:

� Will our model prefer good sentences to bad ones?

� Bad ≠ ungrammatical!

� Bad ≈ unlikely

� Bad = sentences that our acoustic model really likes but aren’t

the correct answer

Measuring Model Quality

� Word Error Rate (WER)

� The “right” measure:
� Task error driven

� For speech recognition

� For a specific recognizer!

� For general evaluation, we want a measure which
references only good text, not mistake text (why?)

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions

true sentence size

WER: 4/7

= 57%

4

Measuring Model Quality

� The Shannon Game:

� How well can we predict the next word?

� Unigrams are terrible at this game. (Why?)

� “Entropy”: really per-word test log likelihood (misnamed)

When I order pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

Measuring Model Quality

� Problem with “entropy”:
� 0.1 bits of improvement doesn’t sound so good

� Solution: perplexity

� Interpretation: average branching factor in model

� Big notes:
� It’s easy to get bogus perplexities by having bogus probabilities

that sum to more than one over their event spaces. 30% of you
will do this on HW1.

� Even though our models require a stop step, averages are per
actual word, not per derivation step.

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

F
r
a
c
t
io
n
 S
e
e
n

Unigrams

Bigrams

Rules

Sparsity

� Problems with n-gram models:
� New words appear all the time:

� Synaptitute

� 132,701.03

� multidisciplinarization

� New bigrams: even more often

� Trigrams or more – still worse!

� Zipf’s Law
� Types (words) vs. tokens (word occurences)

� Broadly: most word types are rare ones

� Specifically:
� Rank word types by token frequency

� Frequency inversely proportional to rank

� Not special to language: randomly generated character strings
have this property (try it!)

Parameter Estimation

� Maximum likelihood estimates won’t get us very far

� Need to smooth these estimates

� General method (procedurally)

� Take your empirical counts

� Modify them in various ways to improve estimates

� General method (mathematically)

� Often can give estimators a formal statistical interpretation

� … but not always

� Stuff that works not always the same as stuff we can explain (yet!)

Smoothing

� We often want to make estimates from sparse statistics:

� Smoothing flattens spiky distributions so they generalize better

� Very important all over NLP, but easy to do badly!

� We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

a
lle
g
a
ti
o
n
s

a
tt
a
c
k

m
a
n

o
u
tc
o
m
e

…

a
lle
g
a
ti
o
n
s

re
p
o
rt
s

c
la
im

s

a
tt
a
c
k

re
q
u
e
s
t

m
a
n

o
u
tc
o
m
e

…

a
lle
g
a
ti
o
n
s

re
p
o
rt
s

c
la
im

s

re
q
u
e
s
t

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

Priors on Parameters

� Most obvious formal solution: use MAP estimate
instead of ML estimate for a multinomial P(X)

� Maximum likelihood estimate: max P(X|θ)

� MAP estimate: max P(θ|X)

� Dirichlet priors are a convenient choice

� Specified by a center θ’ and strength k, Dir(θ’,k) or
Dir(kθ’)

� Mean is center, higher strength means lower variance

� MAP estimate is then

5

Smoothing: Add-One, Etc.

� With a uniform prior, get estimates of the form

� Add-one smoothing especially often talked about

� For a bigram distribution, can use a prior centered on the empirical
unigram:

� Can consider hierarchical formulations in which trigram is centered
on smoothed bigram estimate, etc [MacKay and Peto, 94]

� Basic idea of conjugacy is convenient: prior shape shows up as
pseudo-counts

� Problem: works quite poorly!

Linear Interpolation

� Problem: is supported by few counts

� Classic solution: mixtures of related, denser histories, e.g.:

� The mixture approach tends to work better than the Dirichlet
prior approach for several reasons

� Can flexibly include multiple back-off contexts, not just a chain

� Good ways of learning the mixture weights with EM (later)

� Not entirely clear why it works so much better

� All the details you could ever want: [Chen and Goodman, 98]

Held-Out Data

� Important tool for calibrating how models generalize:

� Set a small number of hyperparameters that control the degree of
smoothing by maximizing the (log-)likelihood of held-out data

� Can use any optimization technique (line search or EM usually easiest)

� Examples:

Training Data
Held-Out

Data

Test

Data

k

L

Held-Out Reweighting

� What’s wrong with unigram-prior smoothing?

� Let’s look at some real bigram counts [Church and Gale 91]:

� Big things to notice:
� Add-one vastly overestimates the fraction of new bigrams

� Add-0.0000027 vastly underestimates the ratio 2*/1*

� One solution: use held-out data to predict the map of c to c*

Count in 22M Words Actual c* (Next 22M) Add-one’s c* Add-0.0000027’s c*

1 0.448 2/7e-10 ~1

2 1.25 3/7e-10 ~2

3 2.24 4/7e-10 ~3

4 3.23 5/7e-10 ~4

5 4.21 6/7e-10 ~5

Mass on New 9.2% ~100% 9.2%

Ratio of 2/1 2.8 1.5 ~2

Good-Turing Reweighting I

� We’d like to not need held-out data (why?)

� Idea: leave-one-out validation
� Nk: number of types which occur k times in the

entire corpus

� Take each of the c tokens out of corpus in turn

� c “training” sets of size c-1, “held-out” of size 1

� How many held-out tokens are unseen in
training?
� N1

� How many held-out tokens are seen k times in
training?
� (k+1)Nk+1

� There are Nk words with training count k

� Each should occur with expected count
� (k+1)Nk+1/Nk

� Each should occur with probability:
� (k+1)Nk+1/(cNk)

N1

2N2

3N3

4417 N4417

3511 N3511

.
.
.
.

/N0

/N1

/N2

/N4416

/N3510

.
.
.
.

“Training” “Held-Out”

Good-Turing Reweighting II

� Problem: what about “the”? (say k=4417)

� For small k, Nk > Nk+1

� For large k, too jumpy, zeros wreck estimates

� Simple Good-Turing [Gale and Sampson]:

replace empirical Nk with a best-fit power law

once count counts get unreliable

N1

N2

N3

N4417

N3511

.
.
.
.

N0

N1

N2

N4416

N3510

.
.
.
.

N1

N2 N3

N1

N2

6

Good-Turing Reweighting III

� Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

� Katz Smoothing
� Use GT discounted bigram counts (roughly – Katz left large counts alone)

� Whatever mass is left goes to empirical unigram

Count in 22M Words Actual c* (Next 22M) GT’s c*

1 0.448 0.446

2 1.25 1.26

3 2.24 2.24

4 3.23 3.24

Mass on New 9.2% 9.2%

� Kneser-Ney smoothing: very successful but slightly ad hoc estimator

� Idea: observed n-grams occur more in training than they will later:

� Absolute Discounting

� Save ourselves some time and just subtract 0.75 (or some d)

� Maybe have a separate value of d for very low counts

Kneser-Ney: Discounting

3.23

2.24

1.25

0.448

Avg in Next 22M

3.244

2.243

1.262

0.4461

Good-Turing c*Count in 22M Words

Kneser-Ney: Continuation

� Something’s been very broken all this time

� Shannon game: There was an unexpected ____?

� delay?

� Francisco?

� “Francisco” is more common than “delay”

� … but “Francisco” always follows “San”

� Solution: Kneser-Ney smoothing

� In the back-off model, we don’t want the probability of w as a unigram

� Instead, want the probability that w is allowed in this novel context

� For each word, count the number of bigram types it completes

Kneser-Ney

� Kneser-Ney smoothing combines these two ideas

� Absolute discounting

� Lower order models take a special form

� KN smoothing repeatedly proven effective

� But we’ve never been quite sure why

� And therefore never known how to make it better

� [Teh, 2006] shows KN smoothing is a kind of approximate
inference in a hierarchical Pitman-Yor process (and better
approximations are superior to basic KN)

What Actually Works?

� Trigrams:

� Unigrams, bigrams too little
context

� Trigrams much better (when
there’s enough data)

� 4-, 5-grams often not worth
the cost (which is more than
it seems, due to how speech
recognizers are constructed)

� Note: for MT, 5+ often used!

� Good-Turing-like methods for
count adjustment

� Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell

� Kneser-Ney equalization for
lower-order models

� See [Chen+Goodman]
reading for tons of graphs!

[Graphs from

Joshua Goodman]

Data >> Method?

� Having more data is better…

� … but so is using a better model

� Another issue: N > 3 has huge costs in speech recognizers

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
n
tr
o
p
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

7

Beyond N-Gram LMs

� Lots of ideas we won’t have time to discuss:
� Caching models: recent words more likely to appear again

� Trigger models: recent words trigger other words

� Topic models

� A few recent ideas
� Syntactic models: use tree models to capture long-distance

syntactic effects [Chelba and Jelinek, 98]

� Discriminative models: set n-gram weights to improve final task
accuracy rather than fit training set density [Roark, 05, for ASR;
Liang et. al., 06, for MT]

� Structural zeros: some n-grams are syntactically forbidden, keep
estimates at zero [Mohri and Roark, 06]

� Bayesian document and IR models [Daume 06]

