





| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,      |        |  |
|----------------------------------------------|--------|--|
| the station signs are in deep in english     | -14732 |  |
| the stations signs are in deep in english    | -14735 |  |
| the station signs are in deep into english   | -14739 |  |
| the station 's signs are in deep in english  | -14740 |  |
| the station signs are in deep in the english | -14741 |  |
| the station signs are indeed in english      | -14757 |  |
| the station 's signs are indeed in english   | -14760 |  |
| the station signs are indians in english     | -14790 |  |
| the station signs are indian in english      | -14799 |  |
| the stations signs are indians in english    | -14807 |  |
| the stations signs are indians and english   | -14815 |  |



















# **Regular Languages?**

- N-gram models are (weighted) regular languages Many linguistic arguments that language isn't regular.
  - Long-distance effects: "The computer which I had just put into the machine room on the fifth floor crashed." Recursive structure
  - Why CAN we often get away with n-gram models?

#### PCFG LM (later):

- [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .] [It, could, be, announced, sometime, .]
- [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]



# Is This Working?

- The game isn't to pound out fake sentences!
  - · Obviously, generated sentences get "better" as we increase the model order
  - More precisely: using ML estimators, higher order is always better likelihood on train, but not test
- What we really want to know is:
  - Will our model prefer good sentences to bad ones?
  - Bad ≠ ungrammatical!
  - Bad ≈ unlikely
  - Bad = sentences that our acoustic model really likes but aren't the correct answer















Smoothing: Add-One, Etc.  
• With a uniform prior, get estimates of the form  

$$P_{add-\delta}(x) = \frac{c(x) + \delta}{\sum_{x'}(c(x') + \delta)}$$
• Add-one smoothing especially often talked about  
• For a bigram distribution, can use a prior centered on the empirical  
unigram:  

$$P_{dir}(w|w_{-1}) = \frac{c(w_{-1}, w) + k\hat{P}(w)}{(\sum_{w'} c(w_{-1}, w')) + k}$$
• Can consider hierarchical formulations in which trigram is centered  
on smoothed bigram estimate, etc [MacKay and Peto, 94]

- Basic idea of conjugacy is convenient: prior shape shows up as pseudo-counts
- Problem: works quite poorly!

## Linear Interpolation

- Problem:  $\hat{P}(w|w_{-1},w_{-2})$  is supported by few counts
- Classic solution: mixtures of related, denser histories, e.g.:

 $\lambda \hat{P}(w|w_{-1}, w_{-2}) + \lambda' \hat{P}(w|w_{-1}) + \lambda'' \hat{P}(w)$ 

- The mixture approach tends to work better than the Dirichlet prior approach for several reasons
  - Can flexibly include multiple back-off contexts, not just a chain
  - Good ways of learning the mixture weights with EM (later)
  - Not entirely clear why it works so much better

All the details you could ever want: [Chen and Goodman, 98]



| What's wrong with unigram-prior smoothing?<br>Let's look at some real bigram counts [Church and Gale 91]: |                      |              |                    |  |
|-----------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------------|--|
| Count in 22M Words                                                                                        | Actual c* (Next 22M) | Add-one's c* | Add-0.0000027's c* |  |
| 1                                                                                                         | 0.448                | 2/7e-10      | ~1                 |  |
| 2                                                                                                         | 1.25                 | 3/7e-10      | ~2                 |  |
| 3                                                                                                         | 2.24                 | 4/7e-10      | ~3                 |  |
| 4                                                                                                         | 3.23                 | 5/7e-10      | ~4                 |  |
| 5                                                                                                         | 4.21                 | 6/7e-10      | ~5                 |  |
| Mass on New                                                                                               | 9.2%                 | ~100%        | 9.2%               |  |
| Ratio of 2/1                                                                                              | 2.8                  | 1.5          | ~2                 |  |















### **Beyond N-Gram LMs**

- Lots of ideas we won't have time to discuss:
   Caching models: recent words more likely to appear again
   Trigger models: recent words trigger other words
   Topic models
- A few recent ideas
   Syntactic models: use tree models to capture long-distance syntactic effects [Chelba and Jelinek, 98]
  - Discriminative models: set n-gram weights to improve final task accuracy rather than fit training set density [Roark, 05, for ASR; Liang et. al., 06, for MT]
  - Structural zeros: some n-grams are syntactically forbidden, keep estimates at zero [Mohri and Roark, 06]
  - Bayesian document and IR models [Daume 06]